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Abstract

One-point and two-point exponential functions have been developed and proved to be very effective
approximations of structural response. The exponential has been compared to the linear, reciprocal and
quadratic fit methods. Four test problems in structural analysis have been selected. The use of such
approximations is attractive in structural optimization to reduce the numbers of exact analyses which
involve computationally expensive finite element analysis.

1. INTRODUCTION

The use of detailed, computationally expensive, finite element models has motivated researchers to
develop approximations of structural response. These approximations are useful for re-design particularly
with use of optimization techniques, where the number of finite element analyses can be significantly
reduced. The problem considered here is to construct local approximations using function values and
derivatives of the structural response at one or two design points. The term local approximation used here
means that the approximation is valid only in the vicinity of the current design point and is different from
global approximation methods based on simplified design models or reduced basis techniques which seek to
approximate the response in the entire design space.

Specifically, let x be the current design point, where x = (Xl, x2 ..... Xn) T is a design variable
vector. Let g (.8.) be a structural response such as element stress or fundamental frequency, which enters as
a constraint function in an optimal design formulation. The problem is to construct a local approximation,

ga(3.), based on the function value and derivatives evaluated at x 0 and possibly another design point. Then,

subsequent evaluations of the structural response in the neighborhood of x 0 can be estimated using ga rather
than the exact response g which will involve finite element computations. A variation of this problem is as

follows: Let p_be a direction vector in design space which has been determined to be desirable in terms of

reducing the cost function subject to constraints. Usually, 12is determined by solving a linear program or

quadratic program in optimization algorithms. Now, let x 1 be a second design point along p such that

IIxl-x0] represents a move limit along p. The problem is now to develop a (local)line approximation ga_)

such that ga(_X.)-- g(.8) for points x along the line joining x 0 and x 1, given by

x_.= (1-_) x_0 + _ x_l, 0 _<_ _< 1 (1)

Here, the approximation ga is to be constructed using structural response information at x0 and possibly _x1.

A comparison of various approximation methods has been carried out by Haftka, et. al. (ref. 1) and
Haftka (ref. 2). The methods include linear and quadratic Taylor series expansions involving first order and
second order sensitivity analysis (refs. 3-5), approximations based on use of reciprocal design variables
(refs. 6, 7) and convex approximations (ref. 8). Recently, force approximations have been used by
Vanderplaats (ref. 9). Use of rational polynomials may be found in Ref. 10. In this paper, exponential
approximations of the form

n

ga = C I-I x ai
i=1 i (2)

are considered and compared with linear, reciprocal and quadratic polynomial methods. It is noted the
exponential approximation discussed in Ref. (1) is of a different form than that in (2). The motivation for

choosing exponential approximations of the form in (2) is discussed below.
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2. BASIS FOR EXPONENTIAL APPROXIMATIONS

The motivation for approximating structural response using the exponential form in (2) is discussed
in this section, as also the basis for use of reciprocal variables and force approximations. The basis for

most approximations comes from the equation

P
c_(A) =--

A (3)

which states that stress = element force/area. Area A is the design variable here.

Reciprocal Variables

The choice of reciprocal design variables is natural, since choosing x = 1/A as a variable results in

6 = _(1 / x) being linear in x:

6(x) = P x (4)

In the x-space, larger more limits can be imposed on changes in design, leading to faster convergence.
Now, in a statically indeterminate truss, the stress function is of the form

o(A) =- P(A)
A (5)

The force P is no longer a constant, but dependent on design. The choice of x=l/A is still beneficial as it
tends to linearize the stress function. In general, a fh'st order Taylor service expansion of g(3.) in the
reciprocals of the variables Yi, = 1/xi, i=l ..... n, written in terms of the original variables, xi, is given by

nga(x)=g(xO)+ 5". (xi-Xio) xi° Og/Oxi
i=1 (6)

Force ADuroximations

The idea here is to approximate P(A) in (5) by Taylor series as opposed to or(A), and obtain

P(Ao) +_(Ao) (A-A o)

Oa (A) = A (7)

In the case when P is a constant, the approximation yields Oa = P/A which is exact. Otherwise, curvature
information is retained in (7) and yields a superior approximation to the conventional tangent approximation

CYa= (_(Ao) + O_/OA ° (A-Ao).

Exponential AoDroximations

The approximation introduced in this paper is now discussed. Equation (3) may be re-written as

{J (A) = P A -1 (8)
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Thus,thestressis seento beexponentiallyrelatedto designvariableA. This is thebasisfor approximating
structuralresponsein n-dimensionalspaceby

n
ai

ga (_x) = C rI x i
i=1

where Xl, x2 ..... Xn are non-negative design variables. Choice of constants C and ai are discussed in the
next section.

A second and more general basis for exponential approximations lies in the concept of 'elasticity', a
quantity used by economists and also relevant in nonlinear stress-strain constitutive laws. Consider a

function g = g(x), where x > 0 is a scalar variable. The elasticity of the function is defined as

d (In g)

eg - d (In x)
(9a)

or,

dg/g

eg - dx / x
(9b)

Physically, elasticity may be considered to be in the limit, the percentage change in the function due to a

percentage change in the variable. For instance, g=x 3 has a value ez=3, and g=px -1 has e_ = -1. The
exponents ai in (2) may be considered to be estimates of the elasticity, at the current design_point.

In this section, reciprocal and force approximation methods have been introduced using the

fundamental equation _ = P/A as a basis. Work is being done to generalize these methods to be applicable

to frames and certain elasticity problems as well. The exponential method of approximation has both a=P/A
as a basis as well as the concept of elasticity of a function. One advantage of exponential approximations of
the form in (2) is that, for C > 0, the function ga is a monomial, which opens up the possibility of geometric
programming (ref. 11).

3. CONSTRUCTION OF THE EXPONENTIAL APPROXIMATION

The problem is to find the coefficient C and exponents ai, i=l ..... k, such that the approximate
n

function ga(X) = C l-I x ai closely matches the exact function g(__) in a neighborhood of the current point _x0.
i=1

One-point and two-point approximations will now be given.

l-Point A0proximation

Here, constants C and {ai} are determined using information only at one point x 0. The technique is
based on matching the function value and shapes of ga and g. This technique has beenused in the context

of unconstrained geometric programming where general functions are reduced to posynomial form. Morris
(ref. 11) discusses an application of this concept to structural design problems. We have, upon taking
logarithms,
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Differentiating with respect to xj yields

Note that ga_ 0) = g_0).

n

lnga =In C+ ]_a ilnx i
i=1 (10)

ag a / aXj = ga (11)

Equating aga/axj in (11) to the exact slope ag/axj at x 0 yields the exponents

xj ag / axj

aj _- g Ix0 (12)

The coefficient C is then obtained from ga_ 0) = g_0) as

C=g/I-Ix ai
i

Ix o
(13)

2-Point Aonroximatioq

Information at two points are used to construct the exponential approximation. Let x 0 be the current

design point and x 1 be a second point, which usually is a point along a desired search direction in design

space. The quantities g_0), Vg _0) and g _1) are now used to determine C and {ai}. A least squares
formulation is adopted herein. The variable C and {ai} are obtained from the minimization problem

1 n ai 2 n ai
E= g0-CHxio + gl-CI-Ixil

i=1 i=1

n }
(14)

The minimization of the least squares objective function E is carried out using a modified Newton algorithm,
with a Levenberg-Marquardt correction to the Hessian when descent is not obtained (ref. 12). The
algorithm requires the gradient vector

VE = (aE / aC, c3E / aal, ..., aE / c3an ) (15)

and the Hessian

H E =

ac e/

[symmetric

a2E / aCaa 1 ...

a2E / aa 2...

°,o

a2E / aCaan /

_)2E / aal Dan

a2E / an2
(16)
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Thesederivativesarecomputedfrom analyticallyderivedexpressions.
below.

Algorithm

Step1.

Step2.

Theleastsquaresalgorithmisgiven

2-Point Exoonential

Choosetheinitial estimatesof C and{ai} from (12), (13),andeo = 0.001

Solve

(H E + e 1)_5 =-VET
(17)

and update Cnew= C + 51, (ai)new = ai + 5i+1, i = 1..... n.

Step 3. Evaluate Enew. If Enew < E the set C =Cnew, {ai} = {ai}new, reduce e, say, _: = e/10 (ife <

eo, set e = eo) and go to step 2. If Enew > E, then increase e = 10.e and go to step 2.

The procedure above is terminated when relative and absolute reductions in E for three consecutive iterations
are less than a specified tolerance.

4. TEST PROBLEMS AND RESULTS

Four test problems relating to structural design have been considered. The 1-point and 2-point
exponential approximations developed in Section 3 are examined. Comparison of the approximation to the

original function is done along a line joining two design points x 0, x 1, or at points x where

where _ is scalar variable, 0 < _ < 1.

x=(1-_)x 0 +_x 1

For comparison, the linear (tangent) approximation based on

(18)

ga(X) = g(x O) + Vg(x O) • (_x- _xO)

the reciprocal-linear approximation given in (6), and the quadratic polynomial along the line given by

(19)

ga(_) = a + b_ +c_ 2
(20)

where coefficients a, b, c are obtained from g_0), g_l) and dg/d_ (at _=0) = Vg_ 0) • (,_xl-x_0). Thus, the

1-point exponential, linear, and reciprocal require only g_0), Vg_0), while the 2-point exponential and

quadratic polynomial require, in addition, g_l). The error between g and ga along the line is shown both
graphically as well as quantitatively through a relative error criterion

INRELEER= i=_l[(gi-gai)/gi]2
(21)

and a maximum error criterion
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MAXERR = max Igi - gall

l<i<N (22)

Above,gi = g(x(_i)) is theexactfunctionevaluatedatthe ithdiscretizationpoint alongtheline in (18),gaiis
theapproximatefunctionevaluatedat _i,andN, thenumberof discretizationpoints,ischosenequalto 20.

Cantilever Beam

The axial stress function in a cantilever beam of rectangular cross section, subjected to axial and

transverse loads, is given as

1000 6000
c(x) = +

XlX2 Xlx2 (23)

where Xl, x2 are the width and depth of the cross section, respectively. The choice of design points is

= (1,2) T in., x 1 = (5,8) T in.

x 0

Referring to Fig. 1, the 2-point exponential is in excellent agreement with the original function. The
1-point exponential behaves just as well as the 2-point exponential and is not shown in the figure. The

exponential approximation to ff_) in (23) is of the form

(_a(x) = 6727.2 Xl 0"891 x21"750 (24)

The quadratic polynomial (Fig. 1), as well as the tangent and reciprocal approximations behave very poorly.
The values of RELEER and MAXERR in (21), (22) for this problem are given in Table 1. It is noted that

various choices of xO and x 1 have shown the same trend.

Table 1. Cantilever Beam

Approximation Method Relative Error Maximum Error

1-point exponential

2-point exponential

Linear (tan gem)

Re¢iproc_tl

Ouadratic Polynomial

0.493

0.492

700,0

10_.4

96,9

13.1

13.0

0.165 E5

0.022 E5

0.033 E5
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Tension-Comoression Sorin_

The shear stress function in a spring design problem, with Xl = coil diameter and x2 = wire diameter,
is given by

'_ (_x)=
8000x 1

_x23 1+o61  21[,4Xl-4x2 _1
(25)

For this problem, x 0 = (1.0, 0.3) T and x 1 = (0.3, 0.05) T in. As with the beam, the 2-point and 1-point
exponentials are also in close agreement with the original function. Table 2 provides an error summary for
all the methods. The linear, reciprocal and quadratic polynomial are poor by comparison (Fig. 2). Other

choices ofx 0, x 1 show the same trend for this problem.

Table 2. Tension-Compression Spring

Approximation Method

1-point exponential

2-point exponential

Linear (tangent)

Reciprocal

Quadratic Polynomial

Relative Error Maximum Error (x 106_) _

0.091 0.496

0.088 0.067

2.464 7.265

1.640 5.876

11.060 3.539

Three Bar Symmetrical Truss

The natural frequency of a three bar truss (ref. 3) with x 1, x2 = cross sectional areas, is described
by the function

Xl
co(x)

2_/2X 1 + x 2 (26)

Two sets of design points, leading to different performances, are chosen. These sets are

I. x 0 = (3,4) T in 2 , x 1 = (10,5) T in 2

II. x 0 = (5,5) T in 2 , x 1 = (1,10) T in 2

(27)

SetI: Referring to Fig. 3 and Table 3, the 2-point exponential based on the best fit formulation yields the
best approximation, with

co(x) = 0.2877 Xl0"261 x20"342
(28)
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The1-pointexponentialis poorer,with

o_(x) = 0.2635 x10"32 x20"32 (29)

Set II: Along the search direction, the original function is quite flat. In fact, the 1-point exponential

provides a relatively poor approximation because of the flat nature of the function. The quadratic polynomial
is best here. Even though the 2-point exponential is second-best, (Fig. 4), the best-fit nature of the

approximation, while averaging the error, does not provide an interval within the line where the error is
small. This may cause difficulty for designs near the optimum. Finally, the use of reciprocal variables does
not show any advantage over the direct variables for this case.

Table 3. Three Bar Symmetrical Truss

Approximation Method

1-point exponential

2-point exponential

Linear (tangent)

Reciprocal

Ouadratic Polvnomial

(Set I) (Set II)
Relative Error

0.247

0.059

0.810

0.199

0.128

Maximum Error

0.0286

0.0053

0.100

0.022

0.012

Relative Error

1.386

0.605

1.210

1.902

0.074

Maximum Error

0.065

0.028

0.060

0.060

0.004

Ten Bar Truss

The ten cross sectional areas of the truss shown in Fig. 5 are the design variables. Points xO and _x1

are chosen as the initial and optimum design obtained in Ref. (1), as

x 0 = (5., 5., 5., 5., 5., 5., 5., 5., 5., 5.) T in 2
and (30)

x 1 = (7.94, 0.1, 8.06, 3.94, 0.1, 0.1, 5.74, 5.57, 5.57, 0.1) T in 2

Again, both 1-point and 2-point exponentials provide excellent approximations. The number of
design variables do not seem to affect their quality. Interestingly, the reciprocal approximation provides

equally good results, but to within a certain distance from x 0. Near x 1, the reciprocal abruptly diverges
(Fig. 6). With smaller movelimits, of course, the reciprocal will be excellent for this problem. The
quadratic polynomial provides a good approximation for this problem. Error estimates are given in Table 4.
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Table4. TenBarTruss

ApproximationMethod RelativeError MaximumError

1-point_xponential

2-pointexponential

Linear(tangent)

Reciprocal

QuadraticPolynomial

0.088

0.021

1.528

0.204

0.689 7.9O7

0.599

0.081

13.980

0.803

5. CONCLUSIONS

ai
Exponential functions of the form C I-I x i have been used to approximate structural response. Both

i
1-point and 2-point approximations have been used to determine C and {ai }. The 1-point involves matching
function and derivative values at the current design. The 2-point method is based on minimizing a least
squares function by modified Newton's method. The basis for exponential approximations is from two

sources: one is from structural theory, where o = P/A can be written as o = PA -1, while the other is from

economics, where a function g = cx a has an elasticity equal to the exponent a. The restriction of exponential
approximations is xi > 0. An advantage is that the approximating function is valid for any type of structure
or type of structural response. Further, the exponential approximations when applied to the cost and
constraints of an optimal design problem have the potential for being used in conjunction with geometric
programming which can effectively solve the subproblem.

Results on three out of the four structural problems considered have shown that the exponential
functions have provided excellent approximations, with essentially no error, even for large distances in the
design space. The linear, linear-reciprocal and quadratic polynomial are much inferior.

On one of the problems involving natural frequency of a 3-bar truss, it is observed that the function
is essentially flat or linear. In this case, the 2-point exponential (based on a best-fit) does better than the 1-
point, but the quadratic polynomial is superior, Thus, for linear or nearly linear functions, the linear
approximation is to be preferred. For other cases, the exponential has shown to be a powerful method of
approximation.
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